Hydride and Dihydrogen Ligands

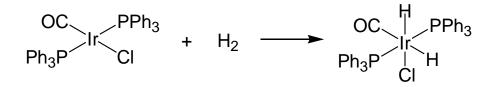
- First Hydride Complex = $[FeH_2(CO)_4]$ Hieber, 1931
- First Dihydrogen Complex = [Mo(H₂)(CO)₃(PCy₃)₂] Kubas, 1983

Characterization of Metal-Hydrides:

- ¹H NMR → 0 to -60 ppm for non d⁰-complexes (0 to +10 for d⁰)
 → coupling to M (*e.g.* Pt or Rh) or co-ligands (*e.g.* PR₃ can be useful)
 → T₁ (dipole-dipole) α r⁶ → > 100 ms
- IR → v(M-H) = 2200-1500 cm⁻¹, but can be weak (therefore unreliable) deuterium labeling can help
- X-Ray \rightarrow Hydrides difficult to detect and M–H underestimated.
- Neutron Diffraction → V. Useful, but not readily available; large crystals required (1 mm³ vs 0.01 mm³)

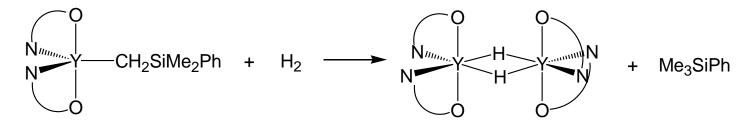
Early TM Hydrides = hydridic	Late TM Hydrides = can be quite acidic (especially with low valent metals)	
[Cp* ₂ ZrH ₂]	[H₂Fe(CO) ₄] - pKa 4.4 [HCo(CO) ₄] - pKa <0.4	MeCO ₂ H - pKa 4.75 F ₃ CCO ₂ H - pKa 0.2

Synthesis of Hydride and Dihydrogen Ligands

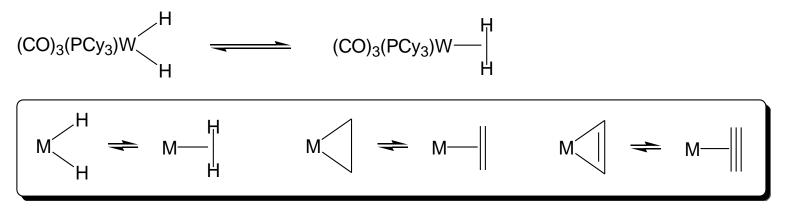

Protonation :

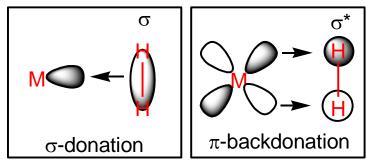
 $[Fe(CO)_4]^{2-} \xrightarrow{H^+} [HFe(CO)_4]^{-} \xrightarrow{H^+} [H_2Fe(CO)_4]$

From H⁻ donors:


 $[WCI_6] + Li[BEt_3H] + PR_3 \longrightarrow [WH_6(PR_3)_3] + 6 LiCI + BEt_3$

By Oxidative Addition (e.g. from H₂ or HSiR₃ or HBR₂)


 $\begin{pmatrix}
O & Me_3C \\
N & H
\end{pmatrix}$


By σ -Bond Metathesis (typically early TM alkyl + H₂)

Hydride and Dihydrogen Ligands

- $M(H_2) = a$ type of σ -complex
- v(H-H) = 2300-2900 cm⁻¹ but often weak
- $^{1}H NMR = 0 \text{ to } -10 \text{ ppm}$ (often broad)
- T_1 (dipole-dipole) α r⁶ \rightarrow <40 ms
- ${}^{1}J_{H,D}$ for M(HD) = 20-30 Hz, versus 43 Hz for free HD and ~1Hz for M(H)(D)
- Both interactions weaken the H–H bond
- Typical H-H distances in M–(H₂) complexes are 84-90 pm (vs 74 pm in free H₂)
- Metals capable of strong π-backdonation and with an accessible oxidation state 2 units higher (e.g. Ir^I → Ir^{III}) can break the H–H bond to give a dihydride.

